

GT74LVC1G79

Low-Power Single Positive-Edge-Triggered D-Type Flip-Flop

1 Features	2 Application
- Available in the Texas Instruments NanoStar™	- Barcode Scanner
- Low Static-Power Consumption: 1µA Maximum	- Cable Solutions
- Low Dynamic-Power Consumption: Cpd = 2.5 pF	- E-Book
Typical at 3.3V	- Embedded PC
- Optimized for 3.3-V Operation	- Fingerprint Biometrics
- tpd = 6 ns Maximum at 3.6 V	- Server Motherboard and PSU
- Suitable for Point-to-Point Applications	- Software Defined Radio (SDR)
- Wide Operating Vcc Range of 1.65 V to 5.5 V	- Field Transmitter: Temperature Pressure Sensor

4 Revision History

Revision	Date	Note
Rev. A0.1	2025. 03. 13	Original Version

The latest datasheet version should be checked on the GTIC official website, as the company does not actively inform customers about updates to the datasheet.

5 Device Summary, Pin and Packages

Table 5-1 Device Summary⁽¹⁾

Serial Name	Part Name	Package	Body Size (Nom)	Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
GT74LVC1G79	GT74LVC1G79S5	SOT23-5	2.9mm×1.6mm×1.1mm	1G79 XXXXX	3	Tape and Reel,3000
GT74LVC1G79	GT74LVC1G79C5	SC70-5	2.1mm×1.2mm×1.0mm	1G79 XXXX	3	Tape and Reel,3000

(1) For all available package, please contact product sales.

(2) There may be additiveral marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

(3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

(4) "XXXXX" in Marking will be appeared as the batch code.

5 Device Summary, Pin and Packages(Continued)

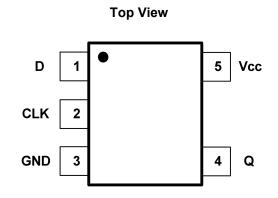


Fig.5-1.GT74LVC1G79:S5(SOT23-5) Package

GT74LVC1G79:C5(SC70-5) Package

Table 5-2 Pin definition

Pin	1	Tuno	Description
Name	S5 C5	Туре	Description
D	1	I	Data Input
CLK	2	I	Positive-Edge-Triggered Clock input
GND	3	-	Ground
Q	4	0	Q Output
Vcc	5	-	Positive supply

6 Voltage, Temperature, ESD and Thermal ratings

6.1 Absolute Maximum Ratings⁽¹⁾

	Parameters			Max.	Unit
Vcc	Supply Voltage		-0.5	6	V
VI	Input voltage ⁽²⁾		-0.5	6	V
Vo	Voltage range applied to any output	It in the high-impedance or power-off state	-0.5	6	V
Vo	Vo Output voltage range in the high or low state		-0.5	Vcc+0.5	V
I _{IK}	Input clamp current V _I < 0			-50	mA
Іок	Output clamp current	V ₀ < 0		-50	mA
lo	Continuous output current			±20	mA
	Continuous current through Vcc or GND			±50	mA
TJ	T _J Maximum junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

	E	Value	Unit	
	Human-Body Model (HBM) ⁽¹⁾	3.5k	V	
V(ESD)	Electrostatic discharge	Charged-Device Model (CDM) ⁽²⁾	2k	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions Over operating free-air temperature range (unless otherwise noted)

Symbol	Paramet	Min	Max	Unit	
Vcc	Supply Voltage		1.65	5.5	V
		Vcc=1.65 V to 1.95 V	0.75×Vcc		
N/		Vcc=2.3 V to 2.7 V	1.7		V
VIH	High-level input voltage	Vcc=3 V to 3.6 V	2		
		Vcc=4.5 V to 5.5 V	0.7×Vcc		
		Vcc=1.65 V to 1.95 V		0.25×Vcc	
N/	V _{IL} Low-level input voltage	Vcc=2.3 V to 2.7 V		0.7	V
VIL		Vcc=3 V to 3.6 V		0.8	
		Vcc=4.5 V to 5.5 V		0.3×Vcc	
VI	Input voltage		0	5.5	V
Vo	Output vol	tage	0	Vcc	V
		Vcc=1.65 V		-1.9	
I _{OH}	High-level output current	Vcc=2.3 V		-3.1	mA
		Vcc=3 V		-4	
		Vcc=1.65 V		1.9	
IOL	Low-level output current	Vcc=2.3 V		3.1	mA
		Vcc=3 V		4	
Δ t/ Δ v	Input transition rise or fall rate	Vcc=1.65 V to 5.5 V		200	ns/V
TA	Operating free-air temperature		-40	125	°C

6.4 Thermal Information

Package Type	θ _{JA}	θ _{JC}	Unit
SOT23-5	267	191	°C/W

7 Electrical Specifications

Vcc=1.65V to 5.5V, GND=0V,FULL=-40°C to +125°C.Typical values are at T_A=+25°C. (unless otherwise noted)

Parameter	Conditions	Vcc	Temp	Min	Тур	Мах	Units
	IOH=-100µA	1.65V to 5.5V		Vcc-0.1			
	IOH= -3.1mA	2.3V		2.1			
V _{OH}	IOH=-4mA	3V	Full	2.8			V
	IOH=-32mA	4.5V		4.1			
	IOH=100µA	1.65V to 5.5V				0.1	
	IOH= 3.1mA	2.3V				0.15	
Vol	IOH=4mA	3V	Full			0.15	V
	IOH=32mA	4.5V				0.2	
I,	VI=GND to 5.5 V	0 V to 5.5 V	Full			1	μA
I _{Off}	Vi or Vo=0 V to 5.5 V	0V	Full			1	μA
∆I _{off}	Vi or Vo=0 V to 5.5 V	0 V to 0.2 V	Full			1	μA
Icc	VI=GND or Vcc to 5.5 V, Io=0	1.65 V to 5.5 V	Full			1	μA
ΔI _{CC}	VI=Vcc-0.6 V,Io=0	5.5V	Full			10	μA
Ci	VI=GND or Vcc	3.6V	+25°C		5.5		pF
C _{pd}	f=10MHZ	1.8V to 5.5V	+25°C		2.5		pF
		1.01/	+25°C		10	16	
	$C_L=30pF$, $R_L=1M\Omega$	1.8V	FULL			20	
	C _L =30pF, R _L =1MΩ		+25°C		6	8	
t _{pd}	$C_L = 30 \text{ pr}$, $R_L = 1002$	2.5V	FULL			10	
	C _L =30pF, R _L =1MΩ	2.01/	+25°C		4	5	ns
		3.6V	FULL			6	
		5.5)/	+25°C		3	4	
		$C_L=30pF, R_L=1M\Omega$ 5.5V	FULL			5	

(1) All unused digital inputs of the device must be held at Vcc or GND to ensure proper device operation.

8 Detailed Description

8.1 Overview

The GT74LVC1G79 is a single positive-edge-triggered D-type flip-flop. Data at the input (D) is transferred to the output (Q) on the positive-going edge of the clock pulse when the setup time requirement is met. Because the clock triggering occurs at a voltage level, it is not directly related to the rise time of the clock pulse. This allows for data at the input to be changed without affecting the level at the output, following the hold-time interval.

8.2 Functional Block Diagram

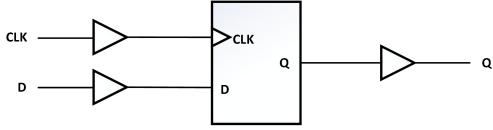


Fig.8-1.Logic Diagram (Positive Logic)

8.3 Feature Description

8.3.1 Partial Power Down (Ioff)

The inputs and outputs for this device enter a high-impedance state when the supply voltage is 0 V. The maximum leakage into or out of any input or output pin on the device is specified by I_{off} in the Electrical Characteristics: $T_A = 25^{\circ}$ C.

8.4 Device Functional Modes

Table.8-1. lists the functional modes of the GT74LVC1G79 device.

Inputs		Output
CLK	D	Q
Positive-Edge	Н	Н
Positive-Edge	L	L
L or H	Х	Q_0

9 Application note

9.1 Application Information

A rotary quadrature encoder is a simple, infinitely-turning knob that outputs two out-of-phase square waves as it is turned and is often used in electronics as a method of human interface. One signal will lead the other in phase depending on which direction the knob is turned. The GT74LVC1G79 can be used to determine which direction the knob is being turned without the need for a microcontroller or other complex monitoring system by connecting the outputs of the knob to the D and CLK inputs of the GT74LVC1G79 as shown in Fig.9-1. It is important to note that the CLK input will control when the direction signal changes, as shown in Fig.9-2.

9.2 Typical Application

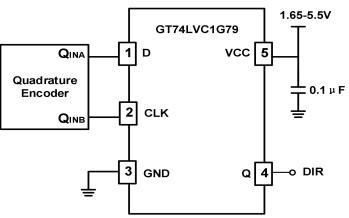
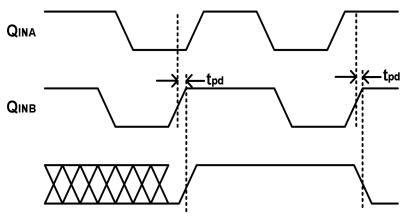
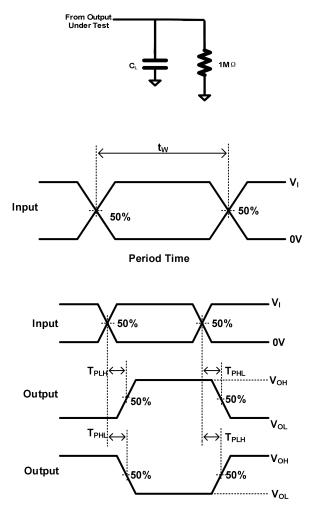


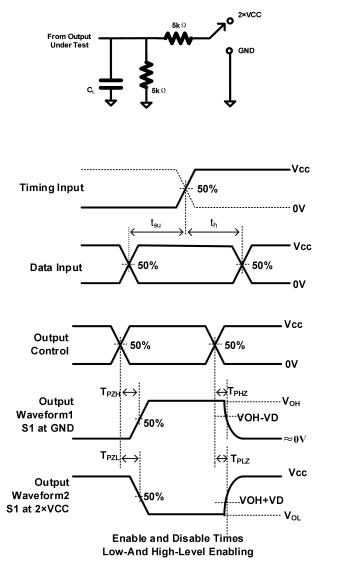
Fig.9-1. Typical Application Diagram




Fig.9-2. Timing Diagram for Quadrature Encoder Application

9.2.1 Design Requirements

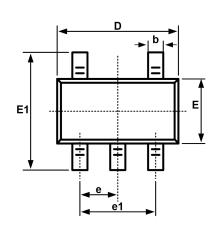
The GT74LVC1G79 device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits.

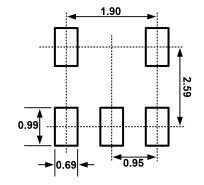

10 Parameter Measurement Information

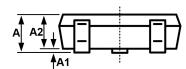
Propagation Delay for Output and Inverted Output

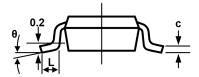
Notes: A. C includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 1 MHz, $Z = 50 \,\Omega$.

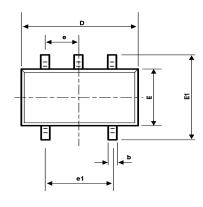


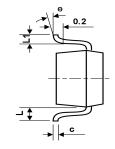

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as $t_{\mathsf{dis}}.$
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all device.

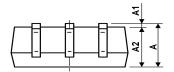

11 Package Outline Dimension


SOT23-5

Recommended Land Pattern (Unit: mm)

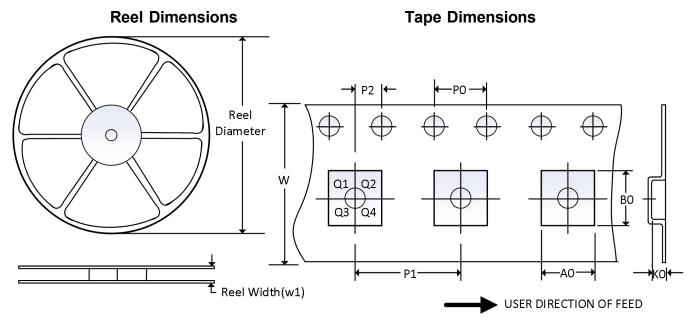



Symbol	Dimensions In	Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Мах
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(B	SC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°



11 Package Outline Dimension(Continued)

SC70-5



Symbol	Dimensions i	Dimensions in Inches				
	Min	Мах	Min	Мах		
A	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.350	0.006	0.014		
С	0.110	0.175	0.004	0.007		
D	2.000	2.200	0.079	0.087		
E	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.650)TYP	0.026TYP			
e1	1.200	1.400	0.047	0.055		
L	0.525	ōREF	0.021REF			
L1	0.260	0.460	0.010	0.018		
θ	0°	8°	0°	8°		

12 Tape And Reel Information

NOTE: The picture is only for reference. Please make the object as the standard.

Key Parameter List Of Tape And Reel

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-5	7"	9.5	3.2	3.2	1.4	4.0	4.0	2.0	8.0	Q3
SC70-5	7"	9.5	2.25	2.55	1.2	4.0	4.0	2.0	8.0	Q3

NOTE:

All dimensions are nominal.
Plastic or metal protrusions of 0.15mm maximum per side are not included.