

GT74LVCR2245 Octal Bus Transceiver with 3-State Outputs

1 Features	2 Application
- Operates from 1.65 V to 3.6 V	- Wearable health and fitness devices
- Inputs accept voltages to 5.5 V	- Network switches
- Max t _{pd} of 2.6 ns at 3.3 V	- Servers
- All Outputs Have Equivalent 26-Ω Series	- Tests and measurements
Resistors, So No External Resistors are Required	
- I _{off} supports live Insertion, partial-power-down	
mode, and back-drive protection	
- Supports mixed-mode signal operation on all	
ports (5-V input/output voltage with 3.3-V V _{CC})	
- Operation temperature range: -40°C to +125°C	

The GT74LVCR2245 device is an octal bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation. This device is fully specified for partial-power-down applications using l_{off}. The l_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. DIR To Seven Other Channels

4 Revision History

Revision	Date	Note
Rev. A1.0	2023. 12. 18	Original Version
Rev. A1.1	2023. 12. 18	1.Updated Package Qty 2.Added Tape and Reel Information
Rev. A1.2	2023. 12. 26	1.Added Marking 2.Added MSL
Rev. A1.3	2024. 01. 26	Updated Part Name

The latest datasheet version should be checked on the GTIC official website, as the company does not actively inform customers about updates to the datasheet.

www.gtic.com 1 / 13

5 Device Summary, Pin and Packages

Table 5-1. Device Summary(1)

Serial Name	Part Name	Package	BodySize(Nom)	Marking ⁽²⁾⁽⁴⁾	MSL ⁽³⁾	Package Qty
GT74LVCR2245	GT74LVCR2245TG	TSSOP-20	6.50mm×4.40mm	GT74LVCR2245 XXXXXXX	3	Tape and Reel,4000

- (1) For all available packages, please contact product sales
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.
- (4) "XXXXX" in Marking will be appeared as the batch code.

www.gtic.com 2 / 13

5 Device Summary, Pin and Packages (Continued)

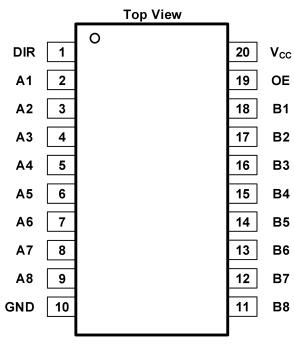


Fig.5-1. GT74LVCR2245:TSSOP20 Package

Table 5-2 Pin Definition

Pi	in	Typo	Description
NO.	Name	Туре	Description
1	DIR	I	Direction Pin
2	A1	I/O	A1 Input or Output
3	A2	I/O	A2 Input or Output
4	A3	I/O	A3 Input or Output
5	A4	I/O	A4 Input or Output
6	A5	I/O	A5 Input or Output
7	A6	I/O	A6 Input or Output
8	A7	I/O	A7 Input or Output
9	A8	I/O	A8 Input or Output
10	GND		Ground Pin
11	B8	I/O	B8 Input or Output
12	B7	I/O	B7 Input or Output
13	B6	I/O	B6 Input or Output
14	B5	I/O	B5 Input or Output
15	B4	I/O	B4 Input or Output
16	B3	I/O	B3 Input or Output
17	B2	I/O	B2 Input or Output
18	B1	I/O	B1 Input or Output
19	ŌĒ	I	Output Enable
20	Vcc	_	Power Pin

www.gtic.com 3 / 13

6 Voltage, Temperature, ESD and Thermal Ratings

6.1 Absolute Maximum Ratings(1)

	Parameter	Min	Max.	Unit	
Vcc	Supply Volt	age Range	-0.5	6.5	V
Vı	Input Volta	ge Range	-0.5	6.5	V
Vo	Voltage Range Applied to Any Output Stat	-0.5	6.5	V	
Vo	Voltage Range applied to Any Ou	tput in The High or Low State ⁽²⁾⁽³⁾	-0.5	V _{CC} +0.5	V
I _{IK}	Input Clamp Current	V _I <0		-50	mA
lok	Output Clamp Current		-50	mA	
Io	Io Continuous Output Current			±50	mA
	Continuous Current 1	Through V _{CC} or GND		±100	mA

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of VCC is provided in the Recommended Operating Conditions_table

6.2 ESD Ratings

	E	Value	Unit	
\//EQD\	V(ESD) Electrostatic Discharge	Human-Body Model (HBM) ⁽¹⁾		V
V(ESD)		Charged-Device Model (CDM) ⁽²⁾	2K	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

www.gtic.com 4 / 13

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			Min	Max	Unit
Vcc	Supply Voltage	Operating	1.65	3.6	V
V CC	Supply Voltage	Data Retention Only	1.5	125	\ \ \
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		
V _{IH}	High-Level Input Voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V
		V _{CC} = 2.7 V to 3.6 V	2		
		V_{CC} = 1.65 V to 1.95 V		0.35 x V _{CC}	
V_{IL}	Low-Level Input Voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
	-	V _{CC} = 2.7 V to 3.6 V		0.8	
Vı	Input Voltage		0	5.5	V
\/	Output Valtage	High or Low State	0	Vcc	V
Vo	Output Voltage	3-State	0	5.5] V
		V _{CC} = 1.65 V		-2	
	High Loyal Output Current	V _{CC} = 2.3 V		-4] m ^
I _{OH}	High-Level Output Current	V _{CC} = 2.7 V		-8	mA mA
		V _{CC} = 3 V		-12	
		V _{CC} = 1.65 V		2	
	Low Lovel Output Current	$V_{CC} = 2.3 \text{ V}$		4	- n Λ
I _{OL}	Low-Level Output Current	V _{CC} = 2.7 V		8	mA
		V _{CC} = 3 V		12	
Δt/Δν	Input Transition Rise	or Fall Rate		10	ns/V
T _A	Operating Free-air Te	emperature	-40	125	°C

⁽¹⁾ All unused inputs of the device must be held at VCC or GND to ensure proper device operation

6.4 Thermal Information

Package Type	$ heta_{JA}$	Ө ЈС	Unit
TSSOP20	102.5	35.9	°C/W

www.gtic.com 5 / 13

7 Electrical Specifications

7.1 Electrical Characteristics

Over recommended operating free-air temperature range (unless otherwise noted)

Da	rometer	Toot Conditions	Vaa		TA = 25°	,C	-40	°C to 12	5°C	Units	
Par	rameter	Test Conditions	Vcc	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Units	
		I _{OH} = -100 μA	1.65 V	Vcc -			Vcc -				
			to 3.6 V	0.2			0.2				
		$I_{OH} = -2 \text{ mA}$	1.65 V	1.2			1.2				
	V _{OH}	$I_{OH} = -4 \text{ mA}$	2.3 V	1.7			1.7			V	
	*On		2.7 V	2.2			2.2			↓ `	
		I _{OH} = -6 mA	3 V	2.4			2.4				
		I _{OH} = -8 mA	2.7 V	2			2			-	
		$I_{OH} = -12 \text{ mA}$	3 V	2			2				
		I _{OL} = -100 μA	1.65 V to 3.6 V			0.2			0.2		
		$I_{OL} = -2 \text{ mA}$	1.65 V			0.45			0.45	V	
		I _{OL} = -4 mA	2.3 V			0.7			0.7		
	V _{OL}	I _{OL} – –4 IIIA	2.7 V			0.4			0.4		
		I _{OL} = -6 mA	3 V			0.55			0.55		
		$I_{OL} = -8 \text{ mA}$	2.7 V			0.6			0.6	3	
		$I_{OL} = -12 \text{ mA}$	3 V			0.8			0.8		
Iı	Control Inputs	V _I = 0 to 5.5 V	3.6 V			±5			±5	μA	
	I _{off}	V_1 or $V_0 = 5.5 \text{ V}$	0			±10			±10	μA	
	I _{OZ} ⁽²⁾	V _O = 0 to 5.5 V	3.6 V			10			10	μA	
	Icc	V _I = V _{CC} or GND	= 0 3.6 V			10			10	μA	
	icc	$3.6 \text{ V} \le \text{V}_1 \le 5.5 \text{ V}^{(3)}$	3.0 V			10			10	μΛ	
	Δlcc	One Input at $V_{CC} = 0.6 \text{ V}$ Other Inputs at V_{CC} or GN				500			500	μA	
Ci	Control Inputs	V _I = V _{CC} or GND	3.3 V		7.1					pF	
C _{io}	A or B ports	V _O = V _{CC} or GND	3.3 V		5					pF	

⁽¹⁾ All typical values are at VCC = 3.3 V, TA = 25°C .

www.gtic.com 6 / 13

⁽²⁾ For I/O ports, the parameter IOZ includes the input leakage current.

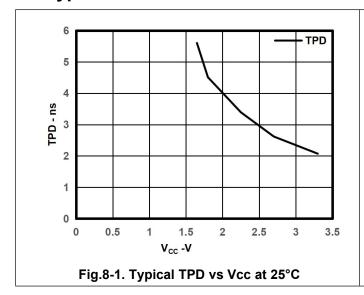
⁽³⁾ This applies in the disabled state only

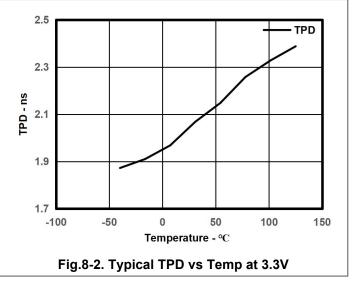
7.2 Switching Characteristics, -40°C to 125°C

Over recommended operating free-air temperature range (unless otherwise noted)

Parameter	From	То	V _{cc} =	1.65V	V _{cc} =	2.5V	V _{CC} =2	.7V	V _{cc} =:	3.6V	Units
Parameter	(Input)	(Output)	Min	Max	Min	Max	Min	Max	Min	Max	Ullits
t _{pd}	A or B	B or A		6.6		3.4		3.1		2.6	
t _{en}	\overline{OE}	A or B		10.5		5.2		4.6		4.2	V
t _{dis}	\overline{OE}	A or B		7		3.3		2.7		2.1	

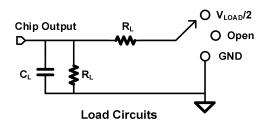
7.3 Operating Characteristics


T_A=25°C

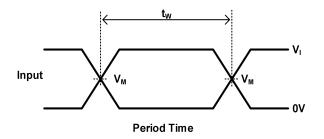

	Davamatar		Test	$V_{CC} = 1.8 \text{ V}$	$V_{CC} = 2.5 V$	$V_{CC} = 3.6 V$	Units
	Parameter			Тур	Тур	Тур	Units
C., 4	Power Dissipation	Outputs Enabled	f = 10 MUz	11.1	11.4	12.7	ņΕ
C _{pd}	Capacitance Per Transceiver	Outputs Disabled	f = 10 MHz	0.6	0.4	0.3	p⊦

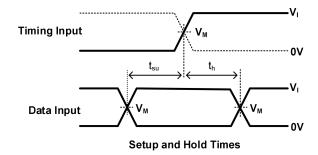
www.gtic.com 7 / 13

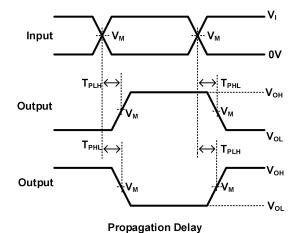
8 Typical Characteristics

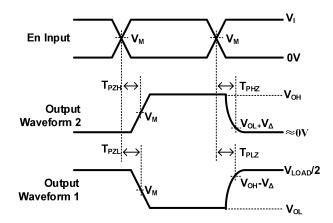


www.gtic.com 8 / 13




9 Parameter Measurement Information




TEST	S1
T _{PHL} /T _{PLH}	OPEN
T _{PLZ} /T _{PZL}	V _{LOAD}
T _{PHZ} /T _{PZH}	GND

Vcc	Inputs		V _M	V _{LAOD}	C _L	R∟	VΔ
	Vı	T _r /T _f	. ▼M	▼ LAOD	OL	INL	νΔ
1.8V±0.15V	V _{CC}	≤2ns	V _{cc} /2	2×V _{CC}	30pF	1kΩ	0.15V
2.5V±0.15V	V _{CC}	≤2ns	V _{CC} /2	2×V _{CC}	30pF	500Ω	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.15V	V _{CC}	≤2.5ns	V _{cc} /2	2×V _{CC}	50pF	500Ω	0.3V

Enable and Disable Times Low-And High-Level Enabling

- Notes: A. C includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that measurement. the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the F. t_{PZL} and t_{PZH} are the same as t_{en}. output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.

for Output and Inverted Output

- D. The outputs are measured one at a time, with one transition per
- E. t_{PLZ} and t_{PHZ} are the same as $t_{\text{dis}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

9 / 13 www.gtic.com

10 Detailed Description

10.1 Overview

The GT74LVCR2245 device is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses are effectively isolated.

All outputs, which are designed to sink up to 12 mA, include equivalent $26-\Omega$ resistors to reduce overshoot and undershoot.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

10.2 Functional Block Diagram

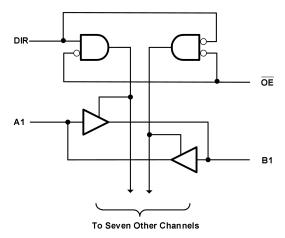


Figure 10-1. Logic Diagram (Positive Logic)

10.3 Feature Description

- -Wide operating voltage range: Operates from 1.65 V to 3.6 V
- -Allows down-voltage translation: Inputs accept voltages to 5.5 V
- -loff feature: Allows voltages on the inputs and outputs when VCC is 0 V

10.4 Device Functional Modes

Table 10-1 Function Table

Inp	uts	Operation				
OE	DIR	Operation				
L	L	B data to A bus				
L	Н	A data to B bus				
Н	X	Isolation				

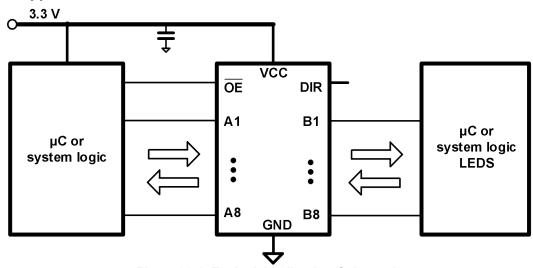
www.gtic.com 10 / 13

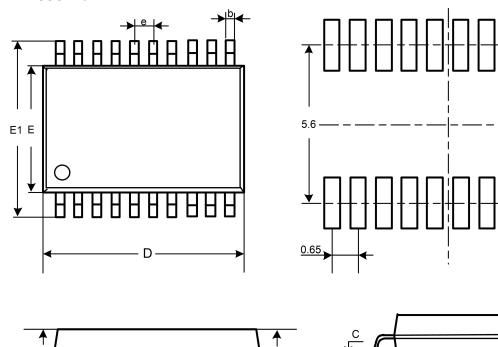
11 Application Note

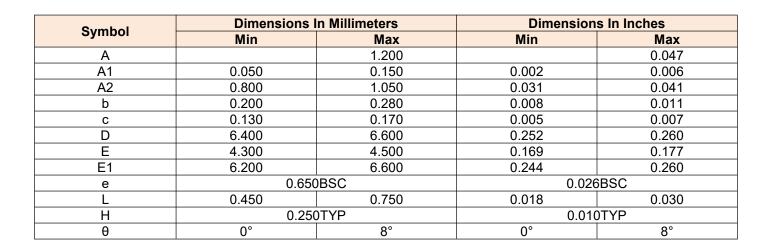
11.1 Application Information

This 8-bit octal noninverting bus transceiver is designed for 1.65-V to 3.6-V VCC operation. This device is fully specified for partial-power-down applications using l_{off} . The l_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

11.2 Typical Application

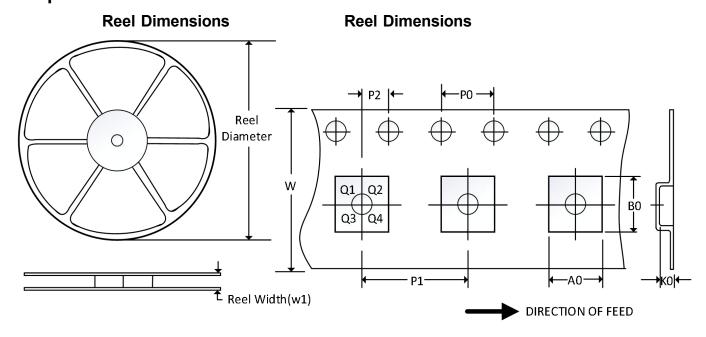



Figure 11-1. Typical Application Schematic


www.gtic.com 11 / 13

12 Package Outline Dimension

TSSOP20



www.gtic.com 12 / 13

13 Tape and Reel Information

NOTE: The picture is only for reference. Please make the object as the standard.

Key Parameter List of Tape and Reel

Package Type	Reel	Reel	A0	B0	K0	P0	P1	P2	W	Pin1
	Diameter	Width(mm)	(mm)	Quadrant						
TSSOP-20	13"	12.4	6.75	6.95	1.20	4.0	8.0	2.0	12.0	Q1

NOTE:

All dimensions are nominal.
 Plastic or metal protrusions of 0.15mm maximum per side are not included.

13 / 13 www.gtic.com