

GT74LVC595 8-Bit Shift Registers with 3-State Output Registers

1 Features	2 Application
 Wide Operating Voltage Range: 1.65V to 5.5V Inputs Accept Voltages Higher than the Supply Voltage All Inputs with Schmitt-Trigger Actions Shift register has direct clear Balanced Propagation Delays Operation Temperature Range -40°C to +125°C, TA Available in Green TSSOP16 and SOP16 Packages 	 Output expansion LED matrix control 7-segment display control 8-bit data storage

3 Description

The GT74LVC595 device contains an 8-bit, serialin,parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs.Separate clocks are provided for both the shift and storage register.Both the shift register and storage register have separate clocks. The shift register clock (SRCLK) is positive-edge triggered. Data is shifted on the positive-going transitions of the SRCLK. The storage register clock (RCLK) is also positive-edge triggered. The data in each register is transferred to the storage register on a positive-going transition of the RCLK.The shift register has a direct overriding clear (SRCLR) input, serial (SER) input, and a serial output (Q_{H'}) for cascading.When the output-enable (OE) input is high, the storage register outputs are in a highimpedance state. Internal register data and serial output $(Q_{H'})$ are not impacted by the operation of the \overline{OE} input.

4 Revision History

Revision	Date	Note
Rev. A1. 0	2024. 04. 07	Original version
Rev. A1. 1	2024. 12. 13	Updated Marking and Package Qty

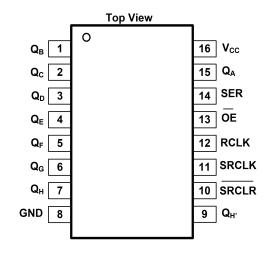
The latest datasheet version should be checked on the GTIC official website, as the company does not actively inform customers about updates to the datasheet.

5 Device Summary, Pin and Packages

Table 5-1. Device Summary⁽¹⁾

Serial Name	Part Name	Package	Body Size (Nom)	Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
GT74LVC595	GT74LVC595TE	TSSOP16	5.00mm×4.40mm×0.90mm	GT74LVC595 XXXXXXX	3	Tape and Reel,4000
GT74LVC595	GT74LVC595PE	SOP16	9.9mm×3.9mm×1.40mm	GT74LVC595 XXXXXXX	3	Tape and Reel,4000

(1)For all available packages, please contact product sales.


(2)There may be additional marking, which relates to the lot trace code information (data code and Vendor code), the logo or the environmental category on the device.

(3)MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

(4)"XXXXX" in Marking will be appeared as the batch code.

5 Device Summary, Pin and Packages(Continued)

Fig.5-1 GT74LVC595: TE(TSSOP16) Package

GT74LVC595: PE(SOP16) Package

Table 5-1 Pin Definition

PIN	l	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
Q _B	1	0	Q _B Output
Qc	2	0	Q _C Output
QD	3	0	Q _D Output
QE	4	0	Q _E Output
QF	5	0	Q _F Output
Q _G	6	0	Q _G Output
Q _H	7	0	Q _H Output
GND	8	-	Ground
Q _H '	9	0	Serial O, can be used for cascading
SRCLR	10	I	Shift register clear, active low
SRCLK	11	I	Shift register clock, rising edge triggered
RCLK	12	I	O register clock, rising edge triggered
ŌĒ	13	I	O Enable, active low
SER	14	I	Serial Input
Q _A	15	0	Q _A Output
VCC	16	-	Positive supply

*It is suggested to leave the unconnected pins floating.

6 Voltage, Temperature, ESD and Thermal Ratings

6.1 Absolute Maximum Ratings

	Parameter	S	Min	Max.	Unit
Vcc	Supply volt	Supply voltage range			
Іік	Input clamp current ⁽¹⁾	Input clamp current ⁽¹⁾ V _I < -0.5V			mA
I _{ОК}	Output clamp current ⁽²⁾	$Output clamp current^{(2)} V_{O} < -0.5V \text{ or } V_{O} > V_{CC} + 0.5 V$			mA
VI	Input voltage			7	V
lo	Output current			25	mA
lcc	Continuous current t	hrough V _{CC} or GND	-75	75	mA
TJ	Junction temperature under bias			150	°C
T _{stg}	Storage temperature range		-65	150	°C
Soldering	Lead Tem	nperature		260	°C

(1)Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.
(2)The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

		Value	Unit	
	V(ESD) Electrostatic discharge	Human-Body Model (HBM)	±3.5K	V
V(ESD)		D) Electrostatic discharge Charged Device Model (CDM)	±2K	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6 Voltage, Temperature, ESD and Thermal Ratings(Continued)

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).

SYMBOL	PARAMI	MIN	MAX	UNIT	
Vcc	Supply V	1.65	5.5	V	
VI	Input vo	0	5.5	V	
Vo	Output vo	Output voltage			V
<u> </u>		VCC=3 V to 3.6V		100	ns/V
Δt/ΔV	Input transition rise and fall rate	VCC=4.5 V to 5.5V		20	ns/V
TA	Ambient tem	Ambient temperature			°C

6.4 Thermal Information

Package Type	θ _{JA}	θյς	Unit
SOP16	73		°C/W
TSSOP16	108		°C/W

7 Electrical Specifications

7.1 Electrical Characteristics

Full=-40°C to +125°C, Typical values are at TEMP=+25°C. (unless otherwise noted)

			Υ.	,							
PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS			
		V _{CC} =2V		Full	1.5						
High-level Input Voltage	VIH		V _{CC} =3V	Full	2.1			v			
			V _{CC} =5.5V	Full	3.85						
			Vcc=2V	Full			0.5				
Low-level Input Voltage	VIL		V _{CC} =3V	Full			0.9	v			
			V _{CC} =5.5V	Full			1.65				
			V_{CC} =2V to 4.5V,I _O =-50 uA	Full	V _{cc} -0.1						
High-level Output Voltage	V _{он}	V _{OH}	$V_{I}\!\!=\!\!V_{IH} \text{ or } V_{IL}$	V _{cc} =3V,I _o =-4 mA	Full	2.5			v		
			V _{CC} =4.5V,I ₀ =-8 mA	Full	3.8						
	V _{OL}	V _{OL}	V _{OL}	V _{OL}		V _{cc} =2V to 4.5V,I _o =50 uA	Full			0.1	
Low-level Output Voltage					V _{OL}	V _{OL}	V _{OL}	$V_I = V_{IH} \text{ or } V_{IL}$	V _{CC} =3V,I _O =4 mA	Full	
			Vcc=4.5V,Io=8 mA	Full			0.5				
Input Lookage Current				+25 ℃		±0.1	±0.5				
Input Leakage Current	lı	Vcc	=0V to 5.5V,V _I =5.5V or GND	FULL			±1	μA			
Off state Outsut Oursent		<u> </u>		+25 ℃		±0.1	±0.5				
Off-state Output Current	loz	VI= VIH	or V_{IL} , V_0 = V_{CC} or GND, V_{CC} =5.5V	FULL			±1	μA			
Supply Current			-5 5)///-)/ or CND 104	+25 ℃		0.1	1				
Supply Current	lcc	V_{CC} =5.5V,V _I = V_{CC} or GND, I ₀ =0A		FULL		5	5	μA			
Input Capacitance	Ci			+25℃		6		pF			

7 Electrical Specifications (Continued)

7.2 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	SYMBOL		-CONDITIONS		TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
				C∟=15pF	Full				
			V _{CC} =3V to 3.6V	C∟=50pF	Full		10	15	ns
		SRCLK to Q _H ⁽²⁾		C∟=15pF	Full				
			V_{CC} =4.5V to 5.5V	C∟=50pF	Full		8	10	ns
				C∟=15pF	Full				
Propagation Delay			V_{CC} =3V to 3.6V	C∟=50pF	Full		10.5	15	ns
FTOPagation Delay	t _{pd}	RCLK to Qn ⁽²⁾		C∟=15pF	Full				
			V_{CC} =4.5V to 5.5V	C∟=50pF	Full		8	12	ns
				C∟=15pF	Full				
			V_{CC} =3V to 3.6V	C∟=50pF	Full		8	15	ns
		SRCLR to Q _H ⁽³⁾		C∟=15pF	Full				
			V_{CC} =4.5V to 5.5V	C∟=50pF	Full		6	10	ns
Enable Time ⁽⁴⁾ t _{en}		OE to Qn	V _{cc} =3V to 3.6V	C∟=15pF	Full				ns
				C∟=50pF	Full		8	12	
	t _{en}		V_{cc} =4.5V to 5.5V	C∟=15pF	Full				- ns
				C∟=50pF	Full		7	10	
		OE to Qn)/)/+= 2 ()/	C∟=15pF	Full				
			V_{CC} =3V to 3.6V	C∟=50pF	Full		8	11	ns
Disable Time ⁽⁵⁾	t _{dis}			C∟=15pF	Full				
			V_{CC} =4.5V to 5.5V	C∟=50pF	Full		7	10	ns
			V _{CC} =3V to 3	3.6V	Full				
Maximum Frequency	f _{MAX}	SRCLK or RCLK	V _{CC} =4.5V to	5.5V	Full		130		MHz
			V _{CC} =3V to 3	3.6V	Full	5			
		SRCLK high or low	Vcc=4.5V to 5.5V		Full	5			ns
Pulse Duration			V _{CC} =3V to 3	3.6V	Full	5			
Fuise Duration	tw	RCLK high or low	V _{CC} =4.5V to	5.5V	Full	5			ns
			V _{CC} =3V to 3	3.6V	Full	5			
		SRCLR low	V _{cc} =4.5V to 5.5V		Full	5			ns
			V _{cc} =3V to 3	3.6V	Full	3			
Octore T		SER to SRCLK	V _{CC} =4.5V to	5.5V	Full	3			ns
Setup Time	t _{su}		V _{cc} =3V to 3	3.6V	Full	5			
		SRCLK to RCLK	V _{CC} =4.5V to	5.5V	Full	5			ns

7 Electrical Specifications (Continued)

PARAMETER	SYMBOL		CONDITIONS			TYP	MAX ⁽¹⁾	UNITS
Hold Time th		SER to SRCLK	V _{CC} =3V to 3.6V	Full	2.5			- ns
	ι'n		V_{CC} =4.5V to 5.5V	Full	2			
Dessurer		t _{REC} SRCLR to SRCLK	V _{CC} =3V to 3.6V	Full	3			ns
Recovery Time	L _{REC}		V_{CC} =4.5V to 5.5V	Full	3			
Power Dissipation Capacitance ⁽⁶⁾⁽⁷⁾	C _{PD}	$f_i=1$ MHz, $V_i=GND$ to V_{CC}		+25 ℃		30	60	pF

NOTES:

1.Specified by design and characterization; not production tested.

2. t_{PD} is the same as t_{PHL} and $t_{\text{PLH}}.$

3. t_{PD} is the same as t_{PHL} only.

4. t_{EN} is the same as t_{PZL} and $t_{\text{PZH}}.$

5. $t_{\text{DIS}}\,\text{is the same as }t_{\text{PLZ}}\,\text{and}\,\,t_{\text{PHZ.}}$

 $6.C_{\text{PD}}$ is used to determine the dynamic power dissipation (P_D in uW).

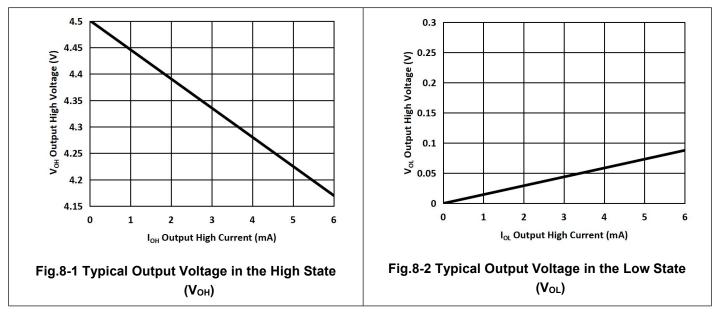
 $P_{D}=C_{PD}\times V_{CC}^{2}\times f_{I}+\sum (C_{L}\times V_{CC}^{2}\times f_{o}).$

where:

 f_i = Input frequency in MHz.

f_o= Output frequency in MHz.

 C_L = Output load capacitance in pF.


V_{CC} = Supply voltage in Volts.

 $\Sigma(C_L \times Vcc^2 \times f_0)$ = Sum of outputs.

7. All 9 outputs switching.

8 Typical Characteristics

9 Parameter Measurement Information

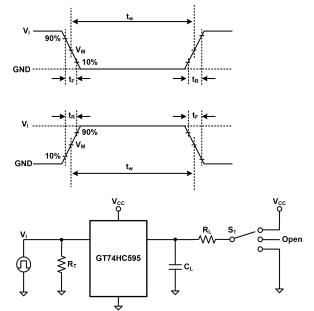


Fig.9-1 Test Circuit for Measuring Switching Times

Test conditions are given in Table 9-1.

Definitions test circuit:

RL: Load resistance.

CL: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_o of the pulse generator)

S₁: Test selection switch.

Tabel 9-1 Test Condition

Supply Voltage	Input		Lo	ad	S1 Position			
Vcc	VI t _R t _F		CL	R∟	t _{PHL} ,t _{PLH} t _{PZH} ,t _{PHZ}		t _{PZL} ,t _{PLZ}	
1.65V to 5.5V	Vcc	≤3.0ns	15pF,50pF	1k	Open	GND	Vcc	

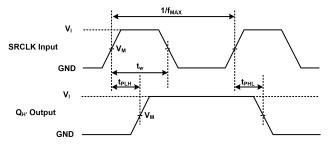


Fig.9-2 Shift Clock Pulse, Maximum Frequency and Input to Output Propagation Delays

Test conditions are given in Table 9-1.

Measurement points are given in Table 9-2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load

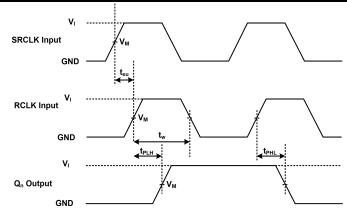


Fig.9-3 Storage Clock to Output Propagation Delays

Test conditions are given in Table 9-1.

Measurement points are given in Table 9-2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

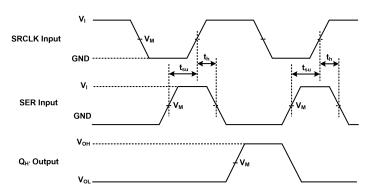


Fig.9-4 Data Set-Up and Hold Times

Test conditions are given in Table 9-1.

Measurement points are given in Table 9-2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

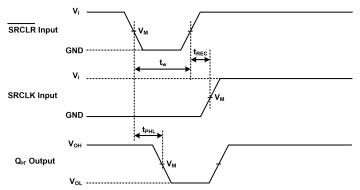


Fig.9-5 Master Reset to Output Propagation Delays

Test conditions are given in Table 9-1. Measurement points are given in Table 9-2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

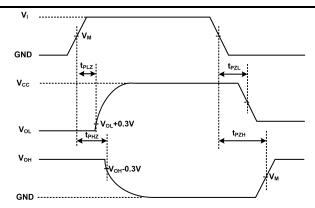


Fig.9-6 Enable and Disable Times

Test conditions are given in Table 9-1.

Measurement points are given in Table 9-2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Tabel 9-2	Measurement Points
-----------	--------------------

Supply Voltage	Input	Output		
V _{cc}	V _M ⁽¹⁾	V _M		
1.65V to 5.5V	0.5×V _{CC}	0.5×V _{CC}		

NOTE.

1. The measurement points should be Vim or V'i when the input rising or falling time exceeds 3.0ns.

10 Detailed Description

10.1 Balanced CMOS 3-State Outputs

This device includes balanced CMOS 3-State outputs. The three states that these outputs can be in are driving high, driving low, and high impedance. The term balanced indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to over current. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at all times.

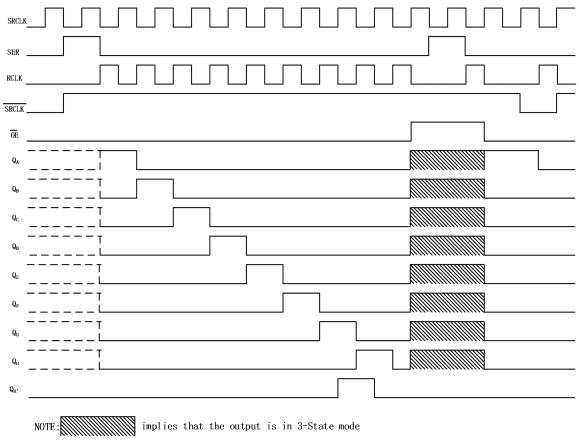
For the high-impedance state, the output voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption limitations. Typically, a 10 k Ω resistor can be used to meet these requirements.

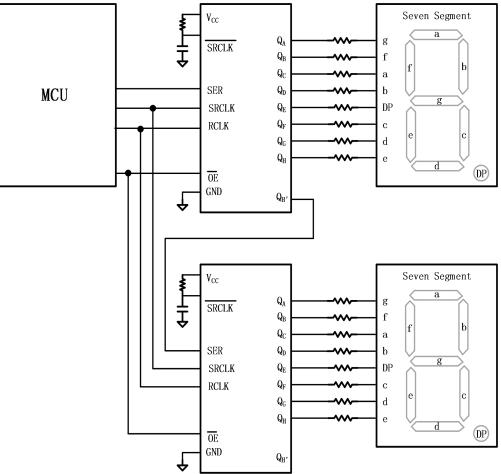
10.2 Balanced CMOS Push-Pull Outputs

This device includes balanced CMOS push-pull outputs. The term balanced indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to over current. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at all times.

	Table 10-1 Function Table								
		INPUTS							
SER	SRCLK	SRCLR	RCLK	ŌĒ	FUNCTION				
x	x	x	х	н	Outputs $Q_A - Q_H$ are disabled				
x	x	х	х	L	Outputs $Q_A - Q_H$ are enabled				
х	х	L	Х	х	Shift register is cleared				
L	Ţ	Н	х	х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.				
Н	1	Н	х	х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.				
х	х	Н	↑ _	х	Shift-register data is stored in the storage register				
x	↑	Н	¢	х	Data in shift register is stored in the storage register, the data is then shifted through.				

10.3 Device Functional Modes

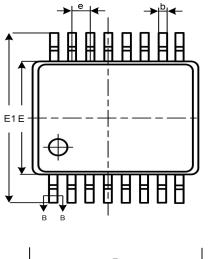


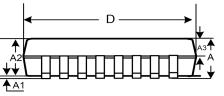

Fig.10-1 Timing Diagram

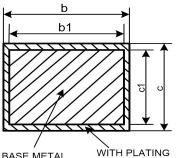
11 Application Information

In this application, the GT74LVC595 is used to control seven-segment displays. Utilizing the serial output and combining a few of the input signals, this implementation reduces the number of I/O pins required to control the displays from sixteen to four. Unlike other I/O, the GT74LVC595 does not need a communication interface for control. It can be easily operated with simple GPIO pins.

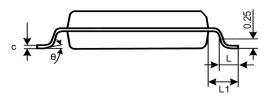
The OE pin is used to easily disable the outputs when the displays need to be turned off or connected to a PWM signal to control brightness. However, this pin can be tied low and the outputs of the GT74LVC595 can be controlled accordingly to turn off all the outputs reducing the I/O needed to three. There is no practical limitation to how many GT74LVC595 devices can be cascaded. To add more, the serial output will need to be connected to the following serial input and the clocks will need to be connected accordingly. With separate control for the shift registers and output registers, the desired digit can be displayed while the data for the next digit is loaded into the shift register. At power-up, the initial state of the shift registers and output registers are unknown. To give them a defined state, the shift register needs to be cleared and then clocked into the output register.



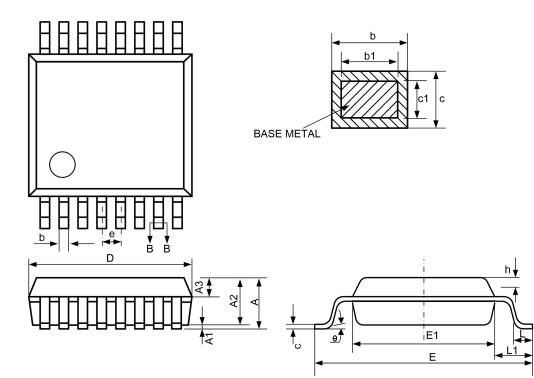

Fig.11-1 Typical Application Schematic



12 Package Outline Dimension

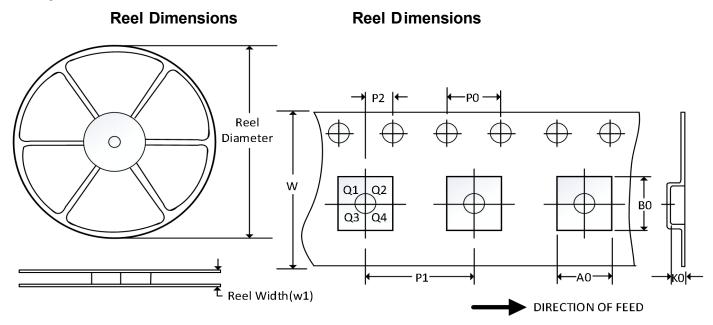

TSSOP16

BASE METAL WITH PLATI SECTION B-B



Symbol	Din	nensions In I	Millimeters	Dimensions In Inches				
Symbol	Min	Nom	Мах	Min	Nom	Мах		
A			1.20			0.047		
A1	0.05		0.15	0.002		0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
A3	0.39	0.44	0.49	0.015	0.017	0.019		
b	0.19		0.30	0.007		0.012		
b1	0.19	0.22	0.25	0.007	0.009	0.010		
С	0.13		0.18	0.005		0.007		
c1	0.12	0.13	0.14	0.005	0.005	0.006		
D	4.86	4.98	5.10	0.191	0.196	0.201		
E	4.30	4.40	4.50	0.169	0.173	0.177		
E1	6.20	6.40	6.60	0.244	0.252	0.260		
е	0.65BSC			0.026BSC				
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1	1.00BSC			0.039BSC				
θ	0°		8°	0°		8°		

12 Package Outline Dimension(Continued)


SOP16

symbol	Dime	nsions In Millime	eters	Dimensions In Inches				
Symbol	Min	Nom	Max	Min	Nom	Max		
A			1.75			0.069		
A1	0.10		0.225	0.004		0.009		
A2	1.30	1.40	1.50	0.051	0.055	0.059		
b	0.39		0.47	0.015		0.019		
b1	0.38	0.41	0.44	0.015	0.016	0.017		
С	0.20		0.24	0.008		0.009		
c1	0.19	0.20	0.21	0.007	0.008	0.008		
D	9.80	9.90	10.00	0.386	0.390	0.394		
E	5.80	6.00	6.20	0.228	0.236	0.244		
E1	3.80	3.90	4.00	0.150	0.154	0.157		
е		1.27(BSC)		0.05(BSC)				
h	0.25		0.50	0.010		0.020		
L	0.50		0.80	0.020		0.031		
L1		1.05REF		0.041REF				
θ	0°		8°	0°		8°		

13 Tape and Reel Information

Note: The picture is only for reference. Please make the object as the standard.

Key Parameter List of Tape and Reel

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP16	13"	12.4	6.90	5.60	1.20	4.0	8.0	2.0	12.0	Q1
SOP16	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1

Note:

(1)All dimensions are nominal.
 (2)Plastic or metal protrusions of 0.15mm maximum per side are not included.