

GT74LVC2G02 Dual 2-Input Positive-NOR Gate

1 Features	2 Application
- Operate from 1.65 V to 5.5 V	- Personal digital assistant devices
- Supports 5-V VCC operation	- AV receiver
- Specified from -40°C to 125°C	- MP3 player/recorder
- Provides down translation to Vcc	- Solid state drive (SSD): client and enterprise
- Max t _{pd} of 4ns at 3.3 V	- Power: telecom/server AC/DC supply
- ±24-mA output drive at 3.3 V	- TV: LCD/digital and high-definition (HDTV)

3 Description	Circuit Diagram
This dual 2-input positive-NOR gate is designed for 1.65-V to 5.5-V V_{CC} operation.	
The GT74LVC2G02 device performs the Boolean function $Y=\overline{A}+\overline{B}$ or $Y=\overline{A}\cdot\overline{B}$ in positive logic. The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry prevents damaging current backflow through the device when the gate is powered down and its output is floating.	1A 1Y 2A 2B 2Y

4 Revision History

Revision	Date	Note	
Rev. A1. 0	2023. 09. 02	Original Version	
		1.Updated Package Qty	
Rev. A1. 1	2023. 12. 15	2023. 12. 15	2.Added Tape and Reel Information
		3.Added Application Note	
Rev. A1. 2	2022 42 26	1.Added Marking	
Rev. A1. 2	2023. 12. 26	2.Added MSL	
Rev. A1. 3	2024. 01. 26	Updated Part Name	

The latest datasheet version should be checked on the GTIC official website, as the company does not actively inform customers about updates to the datasheet.

www.gtic.com 1/12

5 Device Summary, Pin and Packages

Table 5-1. Device Summary(1)

Serial Name	Part Name	Package	Body Size (Nom)	Marking ⁽²⁾⁽⁴⁾	MSL(3)	Package Qty
GT74LVC2G02	GT74LVC2G02V8	VSSOP8	2.00mm×2.30mm×0.75mm	2G02 XXXX	3	Tape and Reel,3000

⁽¹⁾ For all available packages, please contact product sales.

(4) "XXXXX" in Marking will be appeared as the batch code.

www.gtic.com 2/12

⁽²⁾ There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

⁽³⁾ MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

5 Device Summary, Pin and Packages(Continued)

Top View

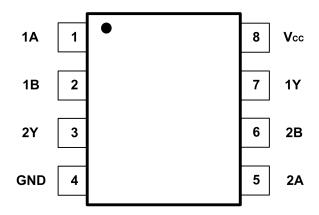


Fig.5-1. GT74LVC2G02: V8 (VSSOP8) Package

Table 5-2 Pin definition

P	in	1/0	Description
Name	V8	I/O	Description
1A	1		Gate 1 Data Input
1B	2		Gate 1 Data Input
2Y	3	0	Gate 2 Data Output
GND	4	=	Ground
2A	5		Gate 2 Data Input
2B	6		Gate 2 Data Input
1Y	7	0	Gate 1 Data Output
VCC	8	-	Supply Voltage

www.gtic.com 3/12

6 Voltage, Temperature, ESD and Thermal Ratings

6.1 Absolute Maximum Ratings(1)

	Parameters		Min.	Max.	Unit
Vcc	Supply voltage range		-0.5	6.5	V
Vı	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impedance or power-	-0.5	6.5	V	
Vo	Voltage range applied to any output in the high or low State ⁽²⁾⁽³⁾	-0.5	V _{CC} +0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA
Ioĸ	Output clamp current	V ₀ < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
TJ	Junction temperature		-55	150	$^{\circ}$
T _{stg}	Storage temperature		-55	150	°C

⁽¹⁾ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

	E	Value	Unit	
\//=CD\	D) Electrostatic discharge	Human-body model (HBM) ⁽¹⁾		V
V(ESD)		Electrostatic discharge Charged device model (CDM) ⁽²⁾		1.5 K

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

www.gtic.com 4/12

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6 Voltage, Temperature, ESD and Thermal Ratings(Continued)

6.3 Recommended Operating Conditions(1)

Over operating free-air temperature range (unless otherwise noted)

Symbol	F	Min	Max	Unit	
Vcc	Supply Voltage Operating		1.65	5.5	V
V _{IH}		V _{CC} =1.65V to 1.95V	0.65×V _{CC}		
		V _{CC} =2.3V to 2.7V	1.7] ,,
V _{IH}	Hign-Level Input Voltage	V _{CC} =3V to 3.6V	2		V
		V _{CC} =4.5V to 5.5V	0.7×Vcc	-	1
		V _{CC} =1.65V to 1.95V		0.35×V _{CC}	
V _{IL}	Law Lavel Imput Valtage	V _{CC} =2.3V to 2.7V		0.7	V
	Low-Level input voltage	V _{CC} =3V to 3.6V		0.8]
		V _{CC} =4.5V to 5.5V		0.3×V _{CC}	1
Vı	i	nput Voltage	0	5.5	V
Vo	О	output Voltage	0	Vcc	V
V _{IH} V _I V _I V _O I _{OH}		V _{CC} =1.65V		-4	
		V _{CC} =2.3V		-8	
	High-Level Output Current	V - 2V		-16	m/
	V _{cc} =1.65V to 1.95V		-24	1	
		V _{CC} =4.5V		5.5 0.35×Vcc 0.7 0.8 0.3×Vcc 5.5 Vcc -4 -8 -16 -24 -32 4 8 16 24 32 20 10	1
		V _{CC} =1.65V		4	
		V _{CC} =2.3V		8	1
Іон	Low-Level Output Current	V - 0V		16	m/
		V _{CC} =3V		24	1
		V _{cc} =3V	32	1	
		V _{CC} =1.8V±0.15V, 2.5V±0.2V		20	
Δt/Δν	Input Transition Rise or Fall Rate	Input Transition Rise or Fall Rate V _{CC} =3.3V±0.3V		10	ns/
		V _{CC} =5V±0.5V		5	
TA	Operating Free-air Temperature	All Other Packages	-40	125	°C

⁽¹⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

6.4 Thermal Information

Package Type	$oldsymbol{ heta}_{JA}$	Ө JС	Unit
VSSOP8	204	77	°C/W

www.gtic.com 5/12

7 Electrical Specifications

7.1 Electrical Characteristics

V_{CC}=1.65V to 5.5V, FULL=-40°C to +125°C. Typical values are at TA=+25°C (unless otherwise noted)(1)

Parameter	Symbol	Test Conditions	Vcc	TA	Min	Тур	Max	Units
		Output						
		І _{он} =–100μА	1.65V to 5.5V	FULL	V _{CC} -0.1			V
		I _{OH} =-4mA	1.65V	FULL	1.2			V
Output High Voltage		I _{OH} =-8mA	2.3V	FULL	1.9			V
	V _{OH}	I _{OH} =–16mA		FULL	2.4			V
		I _{OH} =–24mA	3V	FULL	2.3			V
		I _{OH} =–32mA	4.5V	FULL	3.8			V
		I _{OL} =100μA	1.65V to 5.5V	FULL			0.1	V
Output Low Voltage	Vol -	I _{OL} =4mA		FULL			0.45	V
		I _{OL} =8mA		FULL			0.3	V
		I _{OL} =16mA		FULL			0.4	V
		I _{OL} =24mA	3V	FULL			0.55	V
		I _{OL} =32mA	4.5V	FULL			0.55	V
Off-State Current	l _{off}	V _I or V _O =5.5V	0V	FULL			±10	μA
	'	Input						
Input Leakage Current	l _l	V _I =5.5V or GND	0V to 5.5V	FULL			±5	μA
Input Capacitance	Cı	V _I =V _{CC} or GND	3.3V	FULL		5		pF
		Power Supply						
Power Supply Range	Vcc		1.65V to 5.5V	FULL	1.65		5.5	V
Power Supply Current	Icc	V _I =V _{CC} or GND, I _O =0	5.5V	FULL			10	μA
Delta Power Current	Δlcc	One Input at $V_{CC} - 0.6V$, Other Inputs at V_{CC} or GND	3V to 5.5V	FULL			500	μΑ

⁽¹⁾ All unused digital inputs of the device must be held at Vcc or GND to ensure proper device operation.

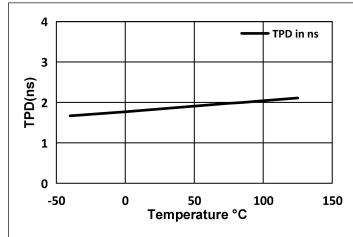
7.2 Switching Characteristics

Over recommended operating free-air temperature range, C_L=30pF or 50 pF (unless otherwise noted)

				-40°C to +125°C							
Parameter	Parameter From(Input)	To(Output)	V _{CC} =1.8V±0.15V		V _{CC} =2.5V±0.2V		V _{CC} =3.3V±0.3V		V _{CC} =5V±0.5V		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{pd}	A or B	Y	1	9	1	3.8	1	4	1	3.3	ns

7.3 Operating Characteristics

TA=-40°C to +125°C


	Parameter	Test	V _{cc} =1.8V	V _{CC} =2.5V	V _{CC} =3.3V	V _{cc} =5V	Units	
	Parameter	Conditions		Тур	Тур	Тур	Тур	Ullits
C _{pd}	Power Dissipation Capacitance	f=10Mhz	23	23	23	31	pF	

www.gtic.com 6/12

8 Typical Characteristics

 V_{CC} =1.65V or 5.5V, FULL=-40°C to +125°C. Typical values are at TA=+25°C (unless otherwise noted)

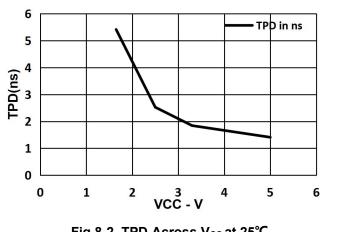
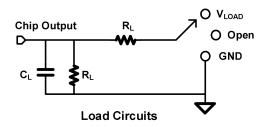
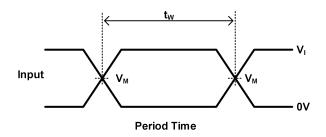
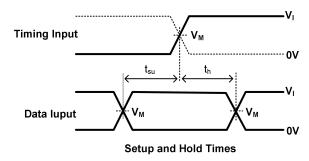
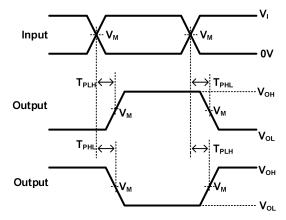



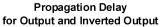
Fig.8-2. TPD Across V_{CC} at 25°C

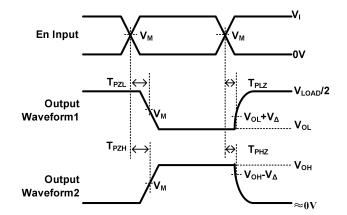
www.gtic.com 7/12




9 Measurement Information




TEST	S1
T _{PHL} /T _{PLH}	OPEN
T _{PLZ} /T _{PZL}	V _{LOAD}
T _{PHZ} /T _{PZH}	GND


V _{CC}	Inputs		V _M	VLOAD	CL	Rı	VΔ
V CC	Vı	T _r /T _f	V M	V LOAD	O _L	IXL	VΔ
1.8V±0.15V	Vcc	≤2ns	V _{CC} /2	2×V _{CC}	30pF	1kΩ	0.15V
2.5V±0.15V	V _{CC}	≤2ns	V _{CC} /2	2×V _{CC}	30pF	500Ω	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.15V	V _{CC}	≤2.5ns	V _{CC} /2	2×V _{CC}	50pF	500Ω	0.3V

Enable and Disable Times Low-And High-Level Enabling

- Notes:A. C_L includes probe and jig capacitance.
 - Waveform 1 is for an output with internal conditions such that measurement.
 - the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the F. output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50.
- D. The outputs are measured one at a time, with one transition per
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- t_{PZL} and t_{PZH} are the same as t_{en} .
- t_{PLH} and t_{PHL} are the same as t_{pd} .
- All parameters and waveforms are not applicable to all devices.

www.gtic.com 8/12

10 Detailed Description

10.1 Overview

The GT74LVC2G02 device contains two 2-input positive-NOR gates and each gate performs the Boolean function $Y = \overline{A} + \overline{B}$ or $Y = \overline{A} \cdot \overline{B}$ in positive logic.

This device is fully specified for partial-power-down applications using l_{off} . The l_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The l_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

10.2 Functional Block Diagram

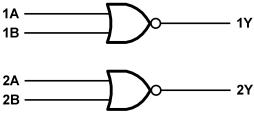


Fig.10-1.Functional Block Diagram

10.3 Feature Description

- Wide operating voltage range.
- Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- I_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

10.4 Device Functional Modes

Input		Output
Α	В	Υ
Н	X	L
X	Н	L
L L		Н

www.gtic.com 9/12

11 Application Note

The GT74LVC2G02 is a high drive CMOS device that can be used for implement NOR logic with a high output drive, such as an LED application. It can produce 24-mA of drive current at 3.3V making it Ideal for driving multiple outputs and good for high speed applications up to 100Mhz. The inputs are 5.5-V tolerant allowing translation down to V_{CC}.

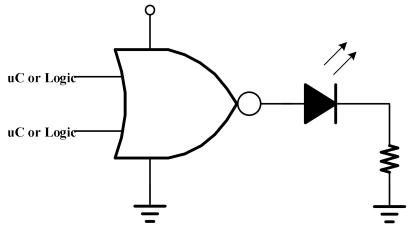
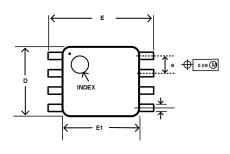
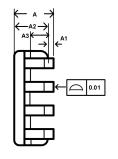
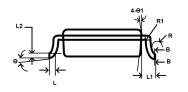


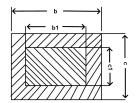
Fig.11-1. Basic LED Driver

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

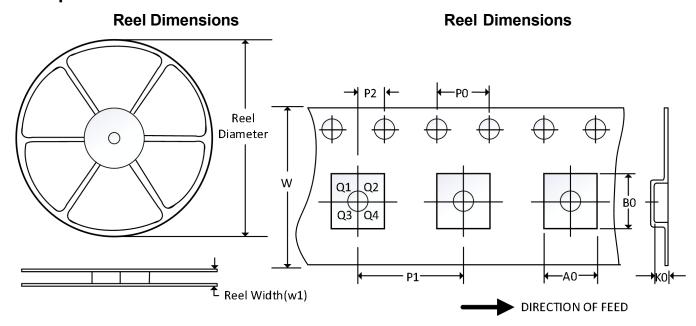

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1-μF capacitor is recommended. If there are multiple VCC pins, then a 0.01-μF or 0.022-μF capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


www.gtic.com 10/12




12 Package Outline Dimension

VSSOP8



Comple al	Din	nensions in Millin	neters	Dimensions in Inches			
Symbol	Min	Nom	Max	Min	Nom	Max	
Α	Α		0.90	-	-	0.035	
A1	0	0.05	0.10	0.000	0.002	0.004	
A2	0.65	0.75	0.80	0.026	0.030	0.031	
A3	0.32	0.37	0.42	0.013	0.015	0.017	
b	0.17	-	0.27	0.007	-	0.011	
b1	0.17	0.20	0.23	0.007	0.008	0.009	
С	0.10	-	0.18	0.004	-	0.007	
c1	0.10	0.13	0.14	0.004	0.005	0.006	
E	3.00	3.10	3.20	0.118	0.122	0.126	
D	1.90	2.00	2.10	0.075	0.079	0.083	
E	3.00	3.10	3.20	0.118	0.122	0.126	
E1	2.20	2.30	2.40	0.087	0.091	0.094	
е	0.40	0.50	0.60	0.016	0.020	0.024	
L	L 0.20		0.35	0.008	0.010	0.014	
L1		0.40REF		0.016REF			
L2		0.12BSC			0.005BSC		
R 0.07		-	-	0.003	-	-	
R1	0.07	-	-	0.003	-	-	
θ	0°	-	6°	0°	-	6°	
θ1	9°	12°	15°	9°	12°	15°	

www.gtic.com 11/12

13 Tape and Reel Information

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
VSSOP8	7"	9.5	2.25	3.35	1.40	4.0	4.0	2.0	8.0	Q3

NOTE:

All dimensions are nominal.
 Plastic or metal protrusions of 0.15mm maximum per side are not included.

www.gtic.com 12/12